

MT Impact – Horizon 2020 (and beyond)

Rudy Tirry President EUATC Country Manager LIONBRIDGE BELGIUM

Agenda

- MT usage today
- NMT vs SMT
- Post-editing
- MT usage tomorrow
- Machine vs Human

MT usage

2017 Language Industry Survey - Trends

2018 – the year of MT

No MT usage	2016	2017	2018 (prel.)
LSP's	80%	57%	36%
Freelancers	69%	67%	48%

Source: European Language Industry Survey

What about Neural ?

Neural MT – why the hype ?

How Google used artificial intelligence to transform Google Translate, one of its more popular services — and how machine learning is poised to reinvent computing itself.

BY GIDEON LEWIS-KRAUS DEC. 14, 2016

Where do you find neural MT today?

- Google Translate
- Skype Translate
- Microsoft Translator Live
- Facebook
- Amazon
- •••

 $\mathbf{x}_{1} = \mathbf{x}_{2}$

- DeepL
- Omniscien
- SDL
- Systran
- KantanMT
- Tilde

The new Wild Wild West in machine translation

SMT vs NMT : main differences

Statistical Machine Translation (SMT)

- Phrase-based
- Separate language model, translation model and reordering model
- Fast training

Neural Machine Translation (NMT)

- Uses (recurrent) neural networks (« deep » NMT uses several layers of neural networks)
- Sentence-based
- One single sequencing model simpler than SMT approach
- 'Predicts' next word
- Restricted vocabulary (max. 50,000)
- More time needed for training
- No easy solution for terminology
- Less tolerant for low quality source
- More pre- and post-processing required ٠

Lionbridge

Is it really that good ?

Findings Tilde (www.tilde.com/about/news/316)

Findings DFKI/QT21 Project

Phenomenon	Occurrences	Percentage correct		
		NMT	Moses	
Formal address	138	90%	86%	
Genitive	114	92%	68%	
Modal construction	290	94%	75%	
Negation	101	93%	86%	
Passive voice	109	83%	40%	
Predicate adjective	122	81%	75%	
Prepositional phrase	104	81%	75%	
Terminology	330	35%	68%	
Tagging	145	83%	100%	
Sum/average	1453	89%	73% ^g	ge

Findings DFKI/QT21 Project

Source: MultiLingual Jan '18, John Tinsley

So, is it better ?

- NMT makes 3 to 5 times less errors in
 - Word ordering
 - Morphology
 - Syntax
 - Agreements

Source: Tilde (EN>ET)

This leads to more fluent translations, mainly on 'difficult' languages

• BUT

- Older techniques (RBMT, trained SMT) can perform better on ambiguity (source:PBML, Aljoscha Burchardt et al., June 2017), terminology and tagging
- Still quite some `dangerous' errors, such as negation (although better than SMT)
- Traditional automated evaluation methods (BLUE score) do not always agree with human evaluation results
- Uneven results, depending on language pair

and tagging ter than SMT) ays agree with

Let's talk Post-editing

Post-editing levels

- Full MTPE
 - No distinction with full human translation
- Light MTPE
 - Correct understanding
 - No effort on stylistic aspects
 - Varying practices regarding linguistic accuracy
 - Run automated QA rules (ex. check for missing negation)
- Focused MTPE
 - Specific rules
 - Specific highly visible parts of the content
 - Check important elements like numbers, names, etc.

Traps

- Higher fluency misleads post-editor
- Terminology
- Tag order issues
- « Target first » approach not ideal

So where does that lead us ?

MT penetration – a personal view

100%

Future role(s) of translator

« Machine translation will replace only those translators that translate like a machine »

« The machine will take care of the keystrokes. The translator will add the human dimension - the cherry on the cake.»

- Non-MT content (<20% same as non-CAT content)
 - Transcreator / Copy-editor
- MT content
 - Full post-editing
 - Light post-editing
 - Focused post-editing

Translator = Post-editor = [Augmented Translator] ?

- Do we need the same profile ?
 - Editorial translation
 - Full post editing
 - Light post editing (cf software testing)
- Do we need the same training ?
 - Creative writing
 - Pattern recognition (search for typical MT errors)
 - Eye for detail and critical sense
 - General (world) knowledge: disambiguation, logical errors

Workable MT is here. Are we ready to work with it ?

Will translation buyer expectations become realistic ?

Will translators embrace technology ?

Will translation companies find a workable business model ?

Will universities adapt training programmes to prepare future generations? Will translation tool providers be able to integrate and standardise ?

Come and see in 2, or rather 12 years !

Q&A

rudy.tirry@lionbridge.com

