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Agenda

 MT usage today

« NMT vs SMT

- Post-editing

« MT usage tomorrow
 Machine vs Human






2017 Language Industry Survey - Trends
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2018 - the year of MT

No MT usage |2016 2017 2018 (prel.)

LSP’s 80% 57% 36%
Freelancers 69% 67% 48%
Source: European Language Industry Survey
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What about Neural ?



Ehe New ork Times Magazine

The Great A.L Awakening

How Google used artificial intelligence to transform Google Translate, one

of its more popular services — and how machine learning is poised to
reinvent computing itself.

BY GIDEOMN LEWIS-KRAUS DEC. 14, 2015
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Where do you find neural MT today?

 Google Translate

« Skype Translate

« Microsoft Translator Live
 Facebook

« Amazon

« DeeplL

« Omniscien
« SDL

« Systran

« KantanMT
« Tilde

The new Wild Wild West in machine translation EUATC 2
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SMT vs NMT : main differences

Statistical Machine Translation (SMT) Neural Machine Translation (NMT)

Phrase-based « Uses (recurrent) neural networks (« deep »

- Separate language model, translation model and NMT uses several layers of neural networks)
reordering model «  Sentence-based

. Fast training One single sequencing model — simpler than

SMT approach
‘Predicts’ next word
. Restricted vocabulary (max. 50,000)
. More time needed for training
. No easy solution for terminology
. Less tolerant for low quality source
. More pre- and post-processing required

*
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Is it really that good ?
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Findings Tilde (www.tilde.com/about/news/316)
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Findings DFKI/QT21 Project

Phenomenon m Percentage correct

NMT Moses
Formal address 138 90% 86%
Genitive 114 92% 68%
Modal construction 290 94% 75%
Negation 101 _ 86%
Passive voice 109 83% 40%
Predicate adjective 122 81% 75%
Prepositional phrase 104 81% 75%

Terminology 330 68%
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Great! Hindi is hard,

Findings DFKI/QT21 Project e doorcper
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So, is it better ?

«  NMT makes 3 to 5 times less errors in
— Word ordering
— Morphology
— Syntax
— Agreements
Source: Tilde (EN>ET)
This leads to more fluent translations, mainly on ‘difficult’ languages

- BUT

— Older techniques (RBMT, trained SMT) can perform better on ambiguity
(source:PBML, Aljoscha Burchardt et al., June 2017), terminology and tagging

— Still quite some ‘dangerous’ errors, such as negation (although better than SMT)

— Traditional automated evaluation methods (BLUE score) do not always agree with
human evaluation results P

— Uneven results, depending on language pair

m———
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Let’s talk Post-editing
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Post-editing levels

« Full MTPE
— No distinction with full human translation
« Light MTPE

— Correct understanding

— No effort on stylistic aspects

— Varying practices regarding linguistic accuracy

— Run automated QA rules (ex. check for missing negation)

« Focused MTPE

— Specific rules
- Specific - highly visible — parts of the content

 Check important elements like numbers, names, etc.

EUATC 3



Traps

Higher fluency misleads post-editor
Terminology

Tag order issues
« Target first » approach not ideal



So where does that lead us ?
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MT penetration — a personal view
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Future role(s) of translator

« Machine translation will replace only those translators
that translate like a machine »

« The machine will take care of the keystrokes.
The translator will add the human dimension - the cherry on the cake.»

 Non-MT content (<20% - same as non-CAT content)
— Transcreator / Copy-editor
« MT content
— Full post-editing
— Light post-editing
— Focused post-editing #

EUATC 3



Translator = Post-editor = [Augmented Translator] ?

« Do we need the same profile ?
- Editorial translation
« Full post editing
- Light post editing (cf software testing)

Do we need the same training ?
« Creative writing

- Pattern recognition (search for typical MT errors)
- Eye for detail and critical sense

« General (world) knowledge: disambiguation, logical errors

* -

EUATC 3



Workable MT is here. Are we ready to work with it ?

Will translation buyer expectations become realistic ?

Will translators embrace technology ?

Will translation companies find a workable business model ?

Will universities adapt training programmes to prepare future generations ?
Will translation tool providers be able to integrate and standardise ?

Come and see in 2, or rather 12 years !

B =
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Q&A

rudy.tirry@lionbridge.com EUATC B



